## Frustratingly Easy Domain Adaptation Daumé III, H. 2007.

#### Kang Ji Language Processing for Different Domains and Genres WS 2009/10

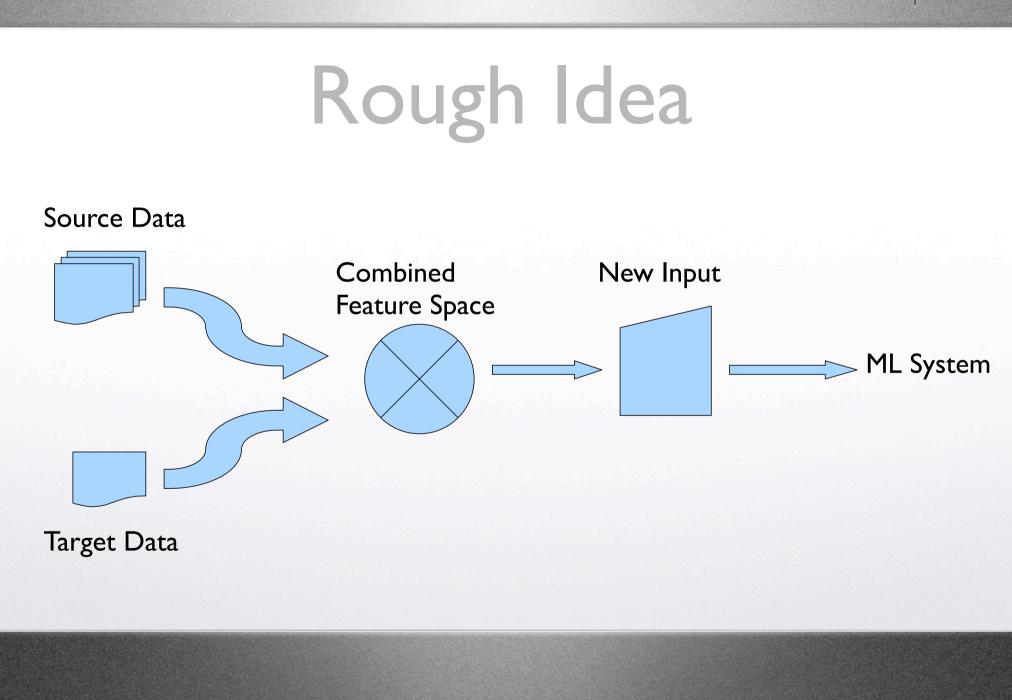
#### Overview

- Motivation
- Annotation
- Core Approach
  - Prior Works
  - Feature Annotation
  - Kernelized Version
- Some Experimental Results

# A common special case

- Suppose we have a NLP system focusing on news document, and now want to migrate it into biographic domain
  - Would there be any difference if we
    - have quite some biographic documents(target data) and lots of news documents.
    - only have news documents(source data).







# ML approaches

- Now we simplified the task to a standard machine learning problem
  - Fully supervised learning: annotated corpus
  - Semi-supervised learning: large unannotated corpus, annotated corpus from the later target data



### Some Annotations

- Input space X
- Output space 4
- Samples: D<sup>s</sup> D<sup>t</sup>

 $D^{s}$  is a collection of N examples and  $D^{t}$  is a collection of M examples (where, typically, N  $\gg$  M).



#### Some Annotations

- Distribution on the source and target domains:  $\mathcal{D}^{s} \mathcal{D}^{t}$
- •learning function  $h : X \rightarrow Y$ 
  - $X = R^{F}$  and that  $Y = \{-I, +I\}$

- The SRCONLY baseline ignores the target data and trains a single model, only on the source data.
- The TGTONLY baseline trains a single model only on the target data.
- The ALL baseline simply trains a standard learning algorithm on the union of the two datasets.

 The WEIGHTED baseline: re-weight examples from D<sup>s</sup>.

in case that  $N \gg M$ , so if  $N = a \times M$ , we may weight each example from the source domain by I/a.

- The PRED baseline is based on the idea of using the output of the source classifier as a feature in the target classifier.
- The LININT baseline, we linearly interpolate the predictions of the SRCONLY and the TGTONLY models.

- The PRIOR model is to use the SRCONLY model as a prior on the weights for a second model, trained on the target data.
- The maximum entropy classifiers model by Daum'e III and Marcu (2006), learns three models and justifies on a per-example basis.

## Feature Augmentation

- $\Phi^{s}, \Phi^{t}: X \rightarrow \dot{X}$  mapping for source and target data respectively, then define  $\dot{X} = R^{3F}$ , we get
- $\Phi^{s}(x) = \langle x, x, 0 \rangle; \Phi^{t}(x) = \langle x, 0, x \rangle$
- the features which are made into three: general version, source-specific version, target-specific version
- get some ideas? examples coming---> black board

#### a simple and pleasing result

•  $\check{K}(x, x') = 2K(x, x')$  same domain

- $\check{K}(x, x') = K(x, x')$  diff. domain
  - the data point from the target domain has twice as much influence as the data point from source domain on the prediction of the test target data.

#### Extension to Multi-domain adaption

(5

- For a K-domain problem, we simply expand the feature space from R<sup>3F</sup> to R<sup>(K+1)F</sup>
- "+1" stands for the "general domain"

# Why better

- This model optimize the feature weights jointly, thus there's no need to crossvalidate to estimate good hyperparameters for each task as the PRIOR model does.
- Also it means that the single supervised learning algorithm that is run is allowed to regulate the trade-off between source/ target and general weights.

#### **Task Statistics**

- Table I:Task statistics;
- columns are task, domain,size of the training, development and test sets, and the number of unique features in the training set.
- Feature sets: lexical information (words,stems, capitalization, prefixes and suffixes), membership on gazetteers, etc.

| Task   | Dom   | # Tr      | # De   | # Te   | # Ft |
|--------|-------|-----------|--------|--------|------|
|        | bn    | 52,998    | 6,625  | 6,626  | 80k  |
|        | be    | 38,073    | 4,759  | 4,761  | 109k |
| ACE-   | nw    | 44,364    | 5,546  | 5,547  | 113k |
| NER    | wl    | 35,883    | 4,485  | 4,487  | 109k |
|        | un    | 35,083    | 4,385  | 4,387  | 96k  |
|        | cts   | 39,677    | 4,960  | 4,961  | 54k  |
| CoNLL  | src   | 256,145   | -      | -      | 368k |
| NER    | tgt   | 29,791    | 5,258  | 8,806  | 88k  |
| PubMed | - src | 950,028   | -      | -      | 571k |
| POS    | tgt   | 11,264    | 1,987  | 14,554 | 39k  |
| CNN-   | src   | 2,000,000 | -      | -      | 368k |
| Recap  | tgt   | 39,684    | 7,003  | 8,075  | 88k  |
|        | wsj   | 191,209   | 29,455 | 38,440 | 94k  |
|        | swbd3 | 45,282    | 5,596  | 41,840 | 55k  |
|        | br-cf | 58,201    | 8,307  | 7,607  | 144k |
| Tree   | br-cg | 67,429    | 9,444  | 6,897  | 149k |
| bank-  | br-ck | 51,379    | 6,061  | 9,451  | 121k |
| Chunk  | br-cl | 47,382    | 5,101  | 5,880  | 95k  |
|        | br-em | 11,696    | 1,324  | 1,594  | 51k  |
|        | br-en | 56,057    | 6,751  | 7,847  | 115k |
|        | br-cp | 55,318    | 7,477  | 5,977  | 112k |
|        | br-er | 16,742    | 2,522  | 2,712  | 65k  |

î

| Task     | Dom    | SRCONLY | TGTONLY | All  | WEIGHT | Pred | LININT | Prior | AUGMENT | T <s< th=""><th>Win</th></s<> | Win |
|----------|--------|---------|---------|------|--------|------|--------|-------|---------|-------------------------------|-----|
|          | bn     | 4.98    | 2.37    | 2.29 | 2.23   | 2.11 | 2.21   | 2.06  | 1.98    | +                             | +   |
|          | be     | 4.54    | 4.07    | 3.55 | 3.53   | 3.89 | 4.01   | 3.47  | 3.47    | +                             | +   |
| ACE-     | nw     | 4.78    | 3.71    | 3.86 | 3.65   | 3.56 | 3.79   | 3.68  | 3.39    | +                             | +   |
| NER      | wl     | 2.45    | 2.45    | 2.12 | 2.12   | 2.45 | 2.33   | 2.41  | 2.12    | =                             | +   |
|          | un     | 3.67    | 2.46    | 2.48 | 2.40   | 2.18 | 2.10   | 2.03  | 1.91    | +                             | +   |
|          | cts    | 2.08    | 0.46    | 0.40 | 0.40   | 0.46 | 0.44   | 0.34  | 0.32    | +                             | +   |
| CoNLL    | tgt    | 2.49    | 2.95    | 1.80 | 1.75   | 2.13 | 1.77   | 1.89  | 1.76    |                               | +   |
| PubMed   | tgt    | 12.02   | 4.15    | 5.43 | 4.15   | 4.14 | 3.95   | 3.99  | 3.61    | +                             | +   |
| CNN      | tgt    | 10.29   | 3.82    | 3.67 | 3.45   | 3.46 | 3.44   | 3.35  | 3.37    | +                             | +   |
|          | wsj    | 6.63    | 4.35    | 4.33 | 4.30   | 4.32 | 4.32   | 4.27  | 4.11    | +                             | +   |
|          | swbd3  | 15.90   | 4.15    | 4.50 | 4.10   | 4.13 | 4.09   | 3.60  | 3.51    | +                             | +   |
|          | br-cf  | 5.16    | 6.27    | 4.85 | 4.80   | 4.78 | 4.72   | 5.22  | 5.15    |                               |     |
| Tree     | br-cg  | 4.32    | 5.36    | 4.16 | 4.15   | 4.27 | 4.30   | 4.25  | 4.90    |                               |     |
| bank-    | br-ck  | 5.05    | 6.32    | 5.05 | 4.98   | 5.01 | 5.05   | 5.27  | 5.41    |                               |     |
| Chunk    | br-el  | 5.66    | 6.60    | 5.42 | 5.39   | 5.39 | 5.53   | 5.99  | 5.73    |                               |     |
|          | br-cm  | 3.57    | 6.59    | 3.14 | 3.11   | 3.15 | 3.31   | 4.08  | 4.89    |                               |     |
|          | br-en  | 4.60    | 5.56    | 4.27 | 4.22   | 4.20 | 4.19   | 4.48  | 4.42    |                               |     |
|          | br-cp  | 4.82    | 5.62    | 4.63 | 4.57   | 4.55 | 4.55   | 4.87  | 4.78    |                               |     |
|          | br-er  | 5.78    | 9.13    | 5.71 | 5.19   | 5.20 | 5.15   | 6.71  | 6.30    |                               |     |
| Treebank | -brown | 6.35    | 5.75    | 4.80 | 4.75   | 4.81 | 4.72   | 4.72  | 4.65    | +                             | +   |

Table 2: Task results.

### Task results



- "broadcast news" contains no capitalization
- "broadcast conversation"
- "newswire"
- "Weblog"
- "usenet" may contain many email addresses and URLs
- "conversational telephone speech"

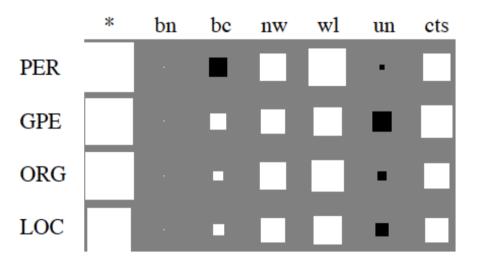


Figure 1: Hinton diagram for feature /Aa+/ at current position.



### Implementation Demo

 <u>http://public.me.com/jikang/easyadapt.pl.zip</u> (only 10 line perl script, how elegant!)

### Reference

- Hal Daum'e III, 2007. Frustratingly Easy Domain Adaptation
- Hal Daume III, Daniel Marcu, 2006. Domain Adaptation for Statistical Classifiers